Measurement

VMI is a diagnostic module for measuring Sensors and Actuators using functions of Multi-Meter, Oscilloscope and Simulation.

Oscilloscope	Graphs out signals by voltage and time.
Multimeter	Measures voltage, resistance, frequency, duty cycle (+/-) and pulse width (+/-).
Simulation	Outputs Voltage, Pulse(Hz), and Duty signals to actuators and to simulate sensor signals.

VMI Specifications

♦ General Features

Item		Specifications			
Micro Controller		ARM9 (S3C2410A) @ 208MHz			
Memory		RAM 32MByte ROM 32Mbyte			
Operating	Voltage	7~35V DC			
Tomporaturo	Operating	0℃ ~50℃ (32°F ~122°F)			
Temperature	Storage	-20°C ~ 80°C (-4°F ~ 176°F)			
		Noncondensing @ 0℃ ~ 10℃ (32°F ~ 50°F)			
Relative Humidity	Operating	95%RH @ 10℃ ~30℃ (50°F ~86°F)			
		70%RH @ 30℃ ~50℃ (86°F ~122°F)			
	Storage	Noncondensing @ -20℃ ~ 80℃ (-4°F ~ 176°F)			
Operating	g Mode	Oscilloscope, DVOM, Simulation Test			
Power Con	sumption	Typical 5W @12V(Oscilloscope, 20V Range)			
Dimension		235mm × 109mm × 60 mm (9.25inch × 4.29inch × 2.36 inch)			
Weig	jht	0.73 kg (1.61 lbs)			

♦ PC Interface

ltem	Specifications
Wire protocol	USB 1.1

♦ Oscilloscope Features

Item		Specifications				
Voltage Range	2CH	±400 mV, ±800 mV, ±2V, ±4V, ±8V, ±20V, ±40V, ±80V, ±200V, ±400V				
	4CH	±4V, ±8V, ±20V, ±40V, ±80V, ±200V, ±400V				
Vertical	Resolution	10 Bit				
Measurable	±400 mV ~ ±2V	±20V ¹⁾				
Differential DC Voltage	±4V ~ ±80V	±200V				
Range	±200V ~ ±400V	±400V				
Sampling Modes		Normal mode / Peak mode				
AC/DC Coupling		Supported				
Input I	mpedance	2 $M\Omega$ respect to power ground				
Time Benge	2CH	100 μ s, 200 μ s, 500 μ s, 1 ms, 2 ms, 5ms, 10 ms, 20 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1s, 2s, 5s				
Time Range	4CH	200 µs, 400 µs, 1 ms, 2 ms, 4ms, 10 ms, 20 ms, 40 ms, 100 ms, 200 ms, 400 ms, 1s, 2s, 4s				
Sampling	2CH	Max. 500k sps per channel simultaneously (Peak mode)				
Speed	4CH	Max. 250k sps per channel simultaneously (Peak mode)				

When measuring voltage in 2-channel mode for a commercial vehicle which uses more than 20V, if the user set the Range of the oscilloscope to $400mV \sim 2V$, it will not be properly measured even if actual measurement is between 400mV to 2V.

When it comes to the vehicles which use more than 20V, please measure it after changing the oscilloscope voltage range to $4V \sim 80V$.

ex) If the voltage between generator B terminal of the commercial vehicle and battery + terminal generates 500mV, Voltage Range of the oscilloscope should be set to $4V \sim 80V$ (not to 400mV $\sim 2V$.)

♦ Multimeter Features

ltem	Specifications			
DC Voltage Range	\pm 400mV, \pm 4V, \pm 40V, \pm 400V			
AC Voltage Range	Not Supported. DO NOT Measure AC Outlet (110V or 220V)			
Resistance Range	400Ω, 4kΩ, 40kΩ, 400kΩ, 10MΩ			
Frequency Range	1Hz ~ 10kHz (Threshold Level: 2.5±0.5V)			
Duty Cycle Range	0.1% ~ 99.9% @ 1Hz ~ 100Hz			
	1.0% ~ 99.0% @ 100Hz ~ 1kHz			
	3.0% ~ 97.0% @ 1kHz ~ 3kHz			
	5.0% ~ 95.0% @ 3kHz ~ 5kHz			
	10.0% ~ 90.0% @ 5kHz ~ 10kHz			
Pulse Width Range	10,4° ~ 1000ms			

♦ Simulation Test Features

ltem		Specifications				
Voltage Output	Output Range	0.0V ~ 5.0V				
	Forced Stop	When output data is out of output range (0.0V~5.0V).				
	Output Range	1Hz ~ 999Hz				
Frequency	Duty	50%				
Output	Voltage Level	High: 5V, Low: 0V				
	Forced Stop	When output data is out of voltage range between (-) 1.0V and 6.0V respect to power ground.				
	Frequency Range	1Hz ~ 999Hz				
Duty	Duty Range	1% ~ 99% @ 1Hz ~ 99Hz (1% or 10% per step)				
Output	Duty Range	10% ~ 90% @ 100Hz ~ 999Hz (Only 10% per ster				
	Pulse Width	Depends on frequency or duty				
	Allowable Current	Max. 2A±0.3A				

VMI Instruction

Installation of Power Cable

To power up VMI module, connect VMI Battery Cables to the battery of the vehicle and to VMI. VMI uses the vehicle battery as a power source.

When connecting the power cable to VMI main body, the user can hold it by a built-in rubbers shroud. Connect red cable to positive (+) terminal and black cable to negative (-) terminal respectively.

VMI battery cables are insulated to prevent short circuits when connecting to the vehicle and there is a hole for inserting a channel probe on each tongs.

Press the POWER button located in the middle of the VMI to turn on the module. To turn off the VMI, press and hold the POWER button for more than 3 seconds.

Warning

G Use only the Power Cable provided by GIT.

Installation of USB Cable

VMI must be connected to the GDS Mobile tablet with the Mini USB cable. *** VMI does not support wireless network.**

The USB Mini must be latched into the VMI to avoid communication loss. When removing the Mini USB cable, press the connector lock tab first, and then disconnect the cable. Use the OTG cable (USB-F to USB Micro) to connect the USB cable to the GDS Mobile.

The above screen will be shown on Measurement Main screen when VMI is properly connected.

Check the connection between the USB cables to avoid disconnection.

Warning

Do not use other cables other than provided USB Cable (USB Mini 2.5 meter cable.) Otherwise it may cause instability of USB connection.

Installation of Channel Probe

Channel Probe and AUX Probe are keyed differently to prevent them from being inserted in the wrong position on VMI module. The Channel Probes have 2 keys and AUX Probe has 1 key.

Before removing the Channel Probe, pull the "push-pull" connector shell (gray area) as shown below.

Hood Buckle and Probe Hanger Instruction

< Hood Buckle >

< Probe Hanger >

Warning

(!)

- To not place or hang VMI module near incandescent light.
- **Check the location of keys and insert when connecting Channel Probe.**
- When removing the Mini USB Cable, press the lock tab first at VMI module side and then pull the Mini USB Cable connector.
- When measuring, be sure to secure the cables such as USB Cable, DC power supply and Channel Probe so that cables do not interfere with other actuators (cooling fan, fan belt, etc.)
- Do not measure 110V or 220V alternating voltages with VMI module. It could cause damage to the VMI.
- When using Oscilloscope, the power source for VMI must be supplied by the vehicle's battery.

The Oscilloscope features:

- 2 channel and 4 channel modes.
- 2 cursors to measure time and voltage
- Displays MAX, AVG, MIN voltage values
- Displays Frequency, Duty(+/-), Cursor A & B voltage values

А н	OME Onli	ine		Vehicle S	electio	n		VC	Θ		33
\$	-:Fe- \$	Ľ	Oscilloscope					1	5	P	
	Auto-CH		Single-s	hot		Trigger			Zero	o Set	
20V	Knock S	ensor	∢ M	1ax : 0.3 V		Avg : 0.0 V		Mir	1 : -0.2 V		•
_											
	~~~~~~					~~~~~~					****
-											
- -20V						DC 🖌	Normal		8	\$	57
20V	Knock S	ensor		1ax : 0.3 V	ı	Avg : 0.0 V		Mir	1 : -0.2 V		•
-											
-20V		A				DC 🔺	Normal	4	9	\$	53
20	Н/4СН		CH-A			СН	I-B			AU	x
Viev	v All	<	2.00 ms		A	19.20	ms	В		Sto	p

### Icon Description

lcon	Description
Auto-CH	Opens Individual Setting, Theme Setting and User Setting. Presets time and voltage ranges for sensors, actuators and systems.
Single-shot	Locks onto and displays a single waveform. This can be used for TPS signal in the sudden acceleration test mode.
Trigger	Toggles between Rising, Falling and No triggers.
Zero Set	Button for zero set. This icon will be enabled in AUX mode.
2CH/4CH	Switches between 2CH and 4CH modes.
CH-A	Turns CH-A On/Off. The color of this icon will be changed when it is enabled.
СН-В	Turns CH-B On/Off. The color of this icon will be changed when it is enabled.
AUX	Turns AUX mode On/Off. The color of this icon will be changed when it is enabled.
View All	Allows viewing of all traces in one graph
<b>&lt;</b> 500 us <b>&gt;</b>	Allows changing of the time scale.
A 4800 us B	Selection of cursors and time between the cursors
Stop	Stops the waveform. This icon toggles between [Stop] button and [Start] button. When stopped, past data is recorded. Allows playback of recorded data.
*	Allows Voltage and other settings
Fe-‡	Allows adjusting Threshold Setting
	Allows opening saved data.
Q	Resets voltage scale, Trigger setup, etc.

### Auto Channel

Auto Channel function pre-sets the time and voltage scales for Sensors, Actuators and Systems.

### ♦ Individual Setting

Select the Sensor or Actuator to be tested for each channel.

HOME Online	Vehicle Selection	vci \Theta 😽 🔠
🏶 🖺	Oscilloscope	0 P
Auto-CH	Single-shot Trig	ger Zero Set
Auto Channel	4 Mar. 0 0 M Aug.	
Individual Setting	Theme Setting	User Setting
• 2CH • 4CH		Engine
CH.A	Knock Sensor	
🖌 СН.В	Knock Sensor	
CH.AUX	None	
	Apply	
-20V <b>A</b>	DC	Normal E
2CH/4CH	CH-A	CH-B AUX
View All < 2.	00 ms 💙 A 1	9.20 ms <b>B</b> Stop

### ✤ Theme Setting

Select the Theme to be tested. The Time and Voltage scales will be pre-set for the sensors.

HOME Online Vehicle Selection	vci 🛛 😽 🔡
🗱 🖅 🔛 Oscilloscope	0 P
Auto-CH Single-shot Trigge	r Zero Set
Auto Channel	₽
Individual Setting Theme Setting	User Setting
	Engine
Crankshaft Position Sensor(CKPS) - Hall Type+Camsh Hall Type Crankshaft Position Sensor(CKPS) - Inductive Type+Ca Sensor(CMPS) - Hall Type Throttle Position Sensor(TPS)+Front Oxygen Sensor(H Front Oxygen Sensor(H02S) - Zirconia Sensor+Rear Ox Zirconia Sensor	aft Position Sensor(CMPS) - amshaft Position IO2S) - Zirconia Sensor xygen Sensor(HO2S) -
Throttle Position Sensor(TPS)+Manifold Absolute Pres	ssure Sensor(MAPS)
Throttle Position Sensor(TPS)+Mass Air Flow Sensor(	MAFS)
Throttle Position Sensor(TPS)+Throttle Position Senso	or(TPS)
Accelerator Position Sensor(APS)+Accelerator Position	n Sensor(APS)
Apply	
-20V A DC	Normal 🖉 😫
2CH/4CH CH-A C	сн-в АИХ
View All          2.00 ms          A         19.2	20 ms B Stop

### ♦ User Setting

Save settings used for circuits and systems. After setting up the scope for a particular function, the settings can be saved.

HOME Online	Vehicle Sele	ction	vci \Theta 😽	3-3	Auto Channel		¢
🏶 - set 🖺	Oscillosc	ope	0	P	Individual Setting	Theme Setting	User Setting
Auto-CH	Single-shot	Trigger	Zero Set		CLoad	Setting Save	Setting
Auto Channel				₽	The current X.Y-axis ra	ange setting and the channel n	ame can be saved with
Individual Setting	Theme Set	ting	Jser Setting			the description.	
• Lo	oad Setting	Save Setting			File name teet		0115
					lest		.003
Open			I	÷	Comment		(0/300)
Comment						Save	
					testing	test	yesterday 🗸 🗸
					1 2 3	4 5 6 7	890
	Load				q w e r	t y u	i o p 🖴
-20V A		DC Normal	Ę 🗘	5 A 2 S	a s d	fgh j	k l Next
2CH/4CH	СН-А	СН-В	A	x	t z x c	vbnı	n ,! .? 🕇
View All < 2	.00 ms 💙 🗛		B St	ор	Sym 👜		

### Single Shot

Single Shot mode locks onto and displays a single waveform. This can be used for TPS signal in the sudden acceleration test mode.

After selecting [Single-shot] button, [Start Single Shot] button will appear. Press [Start single-shot] button to start the function.



#### Trigger

The Trigger function allows the technician to hold the waveform from moving across the screen. Without a trigger, the waveform will continually move across the screen. By setting a trigger, the waveform can be held steady. The trigger can be set on the rising or falling edge of the waveforms.

Select the [Trigger] button to enter trigger mode. The Trigger button will toggle through No trigger, Rising, and Falling edge. The Rising Trigger will lock onto the waveform on the rising edge while the Falling Trigger will lock onto the falling edge. Touch the screen while in Trigger mode to move the trigger. Moving the trigger up or down will change the voltage that the trigger is looking for.



#### Zero Set

This function sets the data to zero while using Press Sensor or Current Sensor.



#### 2CH/4CH

In 2CH mode, CH-A forms one channel and CH-B forms the other channel for a total of two channels for measuring two different signals. The (-) probes are usually attached to ground while the (+) probes are attached to the signal circuits. For Differential Mode the (-) probes are attached to the signal circuit to view voltage drops.

In 4CH mode, each of the probes (CH-A1, CH-A2, CH-B1, CH-B2) are used for its own channel. The battery (-) ground clamp is used as the ground for the 4 channels.





### Channel

[CH-A] button turns the Channel A On and Off.

#### Channel A

CH-A	

Button for CH-A On/Off.



#### <Channel A OFF>

#### Channel B

[CH-B] button allows Channel B to be turned On and Off. An option for a Pressure Sensor is not available in most markets.



Button for CH-B On/Off or enable Press Sensor.



AUX

Button for AUX Low Current or AUX High(100A or 1000A) Current On/Off.



### View All

It is a function to show all waveforms on one screen. The waveforms are laid one on top of the other. Each waveform and their names are shown in different colors so that users can distinguish one waveform from another. This function is helpful when checking timing with different signals.

Ħ	HOME	Onli	ne		Vehicle S	Selection	ı		VCI $\Theta$	•	38
\$		<b></b> ‡			Oscillo	oscop	e			0	₽
	Auto	-CH		Single-s	shot		Trigger		Ze	ro Set	
0.4V							Minin				
- -0.4\ F	/ Press	Max : Cur.A	<b>A</b> 62.1 V : 18.2 V	Avg Cur.E	16.1 V 3 : 18.5 V	N C	DC	Normal	Freq. : Duty (-)	<b>+</b>	
AL	JX Low urrent	Max : Cur.A	504 mV : 504 m\	Avg : / Cur.E	428 mV 3 : 504 mV	N	1in : 7 mV Juty (+) :		Freq. : Duty (-)	:-	
	2CH/4	СН		CH-A			СН-	в		AU	x
v	iew All		<	3.00 ms		Α	28.80 r	ns	В	Sto	p

### Setting Time Scale



Increasing or decreasing Time/Division when displaying a waveform.



#### Cursor



A	Enables cursor A and move the position. It turns red when it is enabled. Touch screen to move cursor.
4800 us	Shows duration (time) between cursors A and B.
В	Enables cursor B and move the position. It turns red when it is enabled. Touch screen to move cursor.

### **Description of Oscilloscope Screen Shot**



#### Channel Name and Data

The Description displays the channel name and data on the top of the screen. The 3 groups of data rotate (right/left) through "Min/Max" to Cur-A/Cur-B to Freq/Duty.

◀	Max : 1.05 V	Avg : 0.00 V	Min : -1.11 V	
◀	Freq. : 1.0 kHz	Duty (-) : 50 %	Du <mark>ty (+)</mark> : 50 %	
◀	Cur.A : -0.02 V	Avg : -0.23 V	Cu <mark>r</mark> .B : -0.16 V	

### ♦ Change Mode



DC 📕	DC is commonly used when measuring most sensors and actuator.
AC 🖌	AC is used when measuring an AC signal that has both positive and negative voltage (above and below the zero line). AC can also be used to see variations on a DC signal (alternator output).
Normal	This mode is to show minimum data depending on the sampling speed (Time/Division). Because this mode does not sample short period surging, it is convenient for measuring slow signal devices like O ₂ sensor.
Peak	This mode is to measure instant signals like surge voltage in devices like Injector, Ignition coil and various solenoid valve devices for better accuracy.

#### Sensor Information

When in "Individual Setting" or "Theme Setting" this function will display reference information for the circuit being tested.





### <u>Auto Range and Channel Adjustment</u>

\$	Displays waveforms on screen at its optimized form.
I	Returns back to the user's voltage setup range.
22	Displays this channel in full screen.
XK XK	Returns back to the normal screen size.

#### **Settings**

Selecting the [Setting] button on the left top of the screen will display voltage ranges, Freq/Duty tool and UNI/BI to move waveform on the screen.

- Select the desired voltage to change voltage range
- Move the Frequency tool over the waveform to read frequency and duty. The value is viewed in the Description data.
   Freq.: 658.7 Hz Duty (-): 53 % Duty (+): 46 %
- Selecting the UNI / BI buttons will move the zero line in the screen.



#### Channel Name

By clicking the name of the channel in the Setting mode, the channel name can be changed.



Change Name		•
• Crankshaft Pos		
New Name		
• Camshaft Posit		
New Name		
	Save	

#### ◆ <u>Range</u>

By selecting another voltage, the voltage range of the screen is changed.



#### • <u>Zero Set</u>

Selecting the "Zero Set" will move the zero line in the screen.



• Frequency tool

Move the Frequency tool over the waveform to read frequency and duty. The value is viewed in the Description data.



### **Threshold**

It is a function to adjust threshold position for the duty value measurement. The default value is "Auto Threshold Setting On."



### Auto Threshold Setting On

The threshold is automatically placed on the center.



#### Auto Threshold Setting Off

In special cases, the users who need to change the setting may use this function. To adjust the position of the threshold, move icon up or down. Duty(-) value percentage also displays the icon.



### Save and Open Data

#### ♦ Save

After selecting [STOP] button, the waveform/data can be saved by selecting the [Save] button.



Click button to open "Recorded Data."

Ħ	HOME Onli	ne	Vehicle Sele	ction	vci 🛛 💀 🔀	HOME Online	Vehicle Selection	vci e		38
\$	-s-t-\$	H.	Oscilloso	ope	0 <b>2</b>	Save	Oscilloscope		0	0
	Auto-CH		Single-shot	Trigger	Zero Set					
40V -	CH-A		€ Max : 2.9 V	Avg : 0.0 V	Min:-2.9 V →	The save Be carefind the save Be carefind the save Be carefind the save	ed file can be checked by ful when you remove KDS SD card is removed as we	'Recorded Dat application be ll.	a' menu ecause t	ı. the
						• File name				
-						Oscilloscope_20150723_152001	1			.vsf
-						• comment			((	0/300)
~~~~	~~~~~	سيمين		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-10V				DC	Normal					
20V	CH-B			Avg : 0.1 V	Min:-2.6 V 🕨		ОК			
-										
				~~~~		Oscilloscope_20150723_15200	01			
						1 2 3 4	5 6 7	8	9	0
-						qwer	tyu	io	р	<b>e</b> X
-20V		A		DC	Normal	a s d <u>f</u>	g h j	k I	Ne	ext
			•		► ► Save	t z x c	vbnn	n,!	.?	1
Vie	ew All	<	2.00 ms > 🗚	19.20	ms B Start	Sym 😁		Kr		

#### Recorded Data

Saved waveform data will be opened using the Oscilloscope function.







#### Voltage

Voltage can be measured using CH-B and checks the difference between (-) probe and (+) probe. Displayed is the current voltage along with Max, Min, P_P-[Peak (+) to Peak (-)] and Avg.(Average) voltage. The graph on the bottom shows changes in

voltage over time. Reset all data using 💟 button.



### **!** Warning

Do not measure AC voltage of 110V or 220V. It may cause damage to the VMI.

#### Resistance

Resistance can be measured using CH-B and displays the resistance between the (-) probe and (+) probe. Displayed is the current resistance along with Max, Min, P_P-[Peak (+) to Peak (-)] and Avg(Average) resistance. The graph on the bottom shows

changes in resistance over time. Reset all data using 🖸 button.

Before making a resistance measurement, click [Zero Set] button to zero out the reading. Touch the (+) probe to the (-) probe then click [Zero Set] button.



## !) Warning

- Only measure Resistance with the Power OFF to that circuit. VMI circuit can be damaged when power through channel probe.
- Resistance measurements are affected with temperature and scope cable connection, therefore user should always zero the meter first before measuring resistance.

#### Frequency

Frequency can be measured using CH-B. Displayed is the current frequency along with Max, Min, P_P-[Peak (+) to Peak (-)] and Avg(Average) frequency. The graph on

the bottom shows changes in frequency over time. Reset all data using 💟 button.

Frequency is displayed as Hertz which is the number of cycles that occur in one second. If the display shows 60Hz, this implies that 60 cycles have taken place during a 1-second period of time.



#### **Duty Cycle**

Duty Cycle can be measured using CH-B. Displayed is the current Duty Cycle along with Max, Min, P_P-[Peak (+) to Peak (-)] and Avg(Average) Duty Cycle. The graph

on the bottom shows changes in Duty over time. Reset all data using button. Duty Cycle is the percentage of time the signal is high verses low. Duty is displayed from 0% to 100%. Duty can be displayed as high (+) or low (-) - [Duty (%)+] and [Duty(%)-].





#### **Pulse Width**

Pulse Width can be measured using CH-B. Displayed is the current Pulse Width along with Max, Min, P_P-[Peak (+) to Peak (-)] and Avg(Average). Pulse Width. The graph on the bottom shows changes in Pulse Width over time. Reset all data using O button.

Pulse Width is the time the signal is high or low. Pulse Width can be displayed as high (+) or low (-) - [Pulse Width (ms)+ and Pulse Width (ms) -.





### Dual Mode

GDS Mobile Users may use "Data Analysis" and "Multimeter" functions at the same time.

Tap button on the top right-hand corner of the screen, and click [Data Analysis Multimeter] button. Multimeter screen will be displayed on the bottom screen.

HOME Online	SONATA(LFA)/	2015/G 2.0	T-G		vci 🙉 🎈	<b>)</b>   53
$\mathcal{P}_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Data A	Analysis			0	
< Stop	Graph	Selectiv	ß	DTO	C Analysis	5
Sensor Na	ame(148)		w	Dat	a Analysi	s
Battery Voltage			<u> </u>	Act	uation Te	st
Battery Voltage after IG	i Key		÷.	S/W	/ Manage	ment
Actual Engine Speed			ŵ	Dat	a Analysi	s
Target Idle RPM			-78	Mul Dat	ltimeter a Analvsi	s
Pressure Sensor(MAP)	Signal Voltage		►II	Sim	ulation	•
Intake Manifold Pressu	re		100	0	hPa	
Water Temperature Vol	tage		5.	0	V	
Water Temperature			-39	8	'C	
Ambient Air Temperatu	ire		-35	2	'C	
Intake Air Temperature	Voltage		5	0	V	
Intake Air Temperature			-39	8	'C	
Engine Oil Temperature	9		-3	8	'C	
Fuel Level(Option)			10	0	%	
Fuel Tank Pressure Val	ue(Option)		40.	0	hPa	
02 Sensor Binary Type Downstream(Option)	Bank1		0.	.4	v	
O2 Sensor Linear Type Upstream(Option)	Bank1		2	0	v	
Vehicle Speed			0	0	km/h	
Relative Charge Value			0.	0	%	
Purge Control Valve			3	0	%	

۲	Data	Analysis	Multimeter
---	------	----------	------------

HOME Online	SONATA(LFA	)/2015/G 2.0 T-G ≫	VCI 🔍 😽	38
$\mathcal{P}_{\mu}$	Data	Analysis	O	
< Stop	Graph	Selective Display	Actuation Test	>
Sensor N	ame(148)	Value	Unit	Link Up
Battery Voltage		11.	2 V	
Battery Voltage after I	G Key	11.	2 V	
Actual Engine Speed			0 RPM	
Target Idle RPM		82	0 RPM	
Pressure Sensor(MAP	Signal Voltage	0.	.0 V	
Intake Manifold Press	ıre	100	.0 hPa	
Water Temperature Vo	ltage	5	0 V	
Water Temperature		-30	8 'C	
	Mul	timeter	्रे -	•
<b>Y</b>	Ω	Hz 🖁	- <del>R</del>	s s
Voltage				
	_			
			V	
MAX	: 0.000 V	P_P :	0.000 v	
Ø Ø Ø MIN	: 0.000 V	AVG :	V 000.0	
	Ś	Stop		





#### Simulation

The Simulation function is used for checking sensor circuit operation by inputting the appropriate Voltage/Pulse in the PCM or using a Duty Cycle to operate a solenoid.

Use CH-A for Actuator Control Use CH-B for Voltage and Pulse output

## !) Warning

- Excessive forced simulation test and actuation test may cause malfunctioning of the actuator.
- Forcing a solenoid over a certain period of time may deteriorate the function of solenoid.
- Simulation and actuation test has to be completed in a short period to minimize the chances of actuators damage.

#### Voltage Output

Voltage Output uses CH-B and is used to simulate a voltage to substitute a sensor signal to the ECU. Maximum voltage output is 5V. Using the arrow keys, the input voltage can be adjusted by 1V or 0.1V.

HOME Online	Vehicle Selection	vci 🛛 🐶 🔀				
	Simulation	0 P				
V +	Hz 🌩	л&				
Voltage Output						
		V				
<b>•</b>						
Voltage Output		Tablat				
Sensor	VMI	Tablet				
Sensor ground						
POSITION SENSOR	- + Batte	ery				
Voltage output(use channel B) is a function, which checks ECU & vehicle's state of control by adjustment of analog signal of vehicle's sensors.						
Voltage control is possible when only less than 5V, and if short circuit occurs, voltage output is blocked for protecting circuit.						
<ul> <li>Voltage displayed on t</li> </ul>	he screen is a relative value sc	t can be different from				
	Stop					

### **Warning**

- To not apply probe (+) and probe (-) in reverse.
- During simulation test, if voltage signal does not meet within specific value, the feedback value will be shown in RED text then simulation test will be stopped.
- During the Voltage or Pulse Output function, sensor connector has to be disconnected.
- When simulation test ends, delete error code causing by connector disconnection.
- If input signal (Voltage or Pulse Output) when sensor connector is connected, it could be mixed with sensor signal and inputted as ECU.

### Pulse Output

Pulse Output uses CH-B and is used to simulate a pulse to substitute a sensor signal to the ECU. Maximum pulse output is 999Hz. Using the arrow keys, the input voltage can be adjusted by 1Hz, 10Hz or 100Hz.

HOME Online	Vehicle Selection	vci \Theta 😽 🔀
	Simulation	0 P
V <del>&gt;</del>	Hz ➡	л&
Pulse Output		Hz
Pulse Output      Wheel speed     sensor      (+)     (-)     Speed PCM      Pulse output (use chan	is control odule VMI Ba Ba anel B) is a function which che	Tablet
state of control by adju Pulse control is possib voltage output is block	Istment of analog signal of ve le from 1 up to 999Hz, and if ed for protecting circuit.	short circuit occurs,
	Stop	

### Actuator Control

Actuator Control uses CH-A and is used to operate actuators using Hertz and Duty(-) to test the operation of the actuator.

HOME Online	Vehicle Selection	vci \Theta 😽	36	<b>ft</b>	HOME Online	Vehicle Selection	vci \Theta 😽	) [82]
	Simulation	Ð	₽			Simulation	Ð	₽
$\lor$	Hz ➡	л¢			$\lor$	Hz ➡	л	
Duty Output	Frequency	Duty (%)		L	Outy Output	Frequen	cy Duty (%)	
Ð	30	Hz				50	%	
Dut <u>r</u>	y: 50 % Pulse	: <b>16.7</b> ms				Freq.: <b>30</b> Hz Pul	se: <b>16.7</b> ms	
Duty Output				•	Duty Output			
Actuator	VMI	Tablet			Actuato	or VMI	Tablet	
<ul> <li>Actuator control (use coperating condition.</li> <li>Frequency control is precontrolled by each means</li> </ul>	channel A) is a function which cl ossible from 1 up to 999Hz, but asure of 10% in above 100Hz.	hecks actuator's the duty value can be	,	-	Actuator control operating conditi Frequency contro controlled by eac	(use channel A) is a function whi on. Ji is possible from 1 up to 999Hz, h measure of 10% in above 100H	ch checks actuator's but the duty value can t z.	be
	Stop					Stop		

The Actuator test applies a pulse to an actuator to test the component. Instead of the ECU sending the signal, the VMI can be used to send the signal.



If the circuit draws more than 2 Amps, the Actuator Control function will stop to prevent circuit damage.



### **Dual Mode**

GDS Mobile Users may use "Data Analysis" and "Simulation" functions at the same time.

Tap button on the top right-hand corner of the screen, and click [Data Analysis Simulation] button. Simulation screen will be displayed on the bottom screen.

HOME Online	SONATA(LFA)/	2015/G 2.0	T-G		VCI 🚌 🖣	9   BC
$\mathcal{P}_{\mu}$			Û			
< Stop	Graph	Selectiv	ß	DT	C Analysi	s
Sensor Na	me(148)		w	Dat	ta Analys	is
Battery Voltage	->>- Actuation Test					
Battery Voltage after IG	S/W Managemen			ement		
Actual Engine Speed	- III	Data Analysis				
Target Idle RPM			-1000	Mu	ltimeter ta Analysi	is
Pressure Sensor(MAP)	Signal Voltage	_ L	►II	Sin	nulation	
Intake Manifold Pressur	e		100	.0	hPa	
Water Temperature Volt	age		5.	.0	v	
Water Temperature			-39	.8	'C	
Ambient Air Temperatur	re		-35	.2	'C	
Intake Air Temperature	Voltage		5.	.0	v	
Intake Air Temperature			-39	.8	'C	
Engine Oil Temperature			-3.	.8	'C	
Fuel Level(Option)			10	00	%	
Fuel Tank Pressure Valu	e(Option)		40.	.0	hPa	
O2 Sensor Binary Type Downstream(Option)	Bank1		0.	.4	v	
O2 Sensor Linear Type Upstream(Option)	Bank1		2.	.0	v	
Vehicle Speed			0.	.0	km/h	
Relative Charge Value			0.	.0	%	
Purge Control Valve			3	.0	%	

15/G 2.0	T-G	vci 🚌 🍕	) [36]
alysis		O	
Selecti	<b>6</b> 3	DTC Analysis	
	w	Data Analysis	
	<u> →</u>	Actuation Tes	at
	\$	S/W Managen	nent
_	 س	Data Analysis	_
	-V	Multimeter Data Analysis	_
l	►II	Simulation	
	100.0	hPa	
	5.0	V	
	-39.8	'C	
	-35.2	'C	
	5.0	v	
	-39.8	'C	
	-3.8	'C	
	100	%	
	40.0	hPa	
	0.4	v	
	2.0	v	
	0.0	km/h	
	0.0	%	
	3.0	%	

HOME Online	SONATA(LFA)		VCI 🙃	•	343		
$\mathcal{P}_{\mu}$	Data Analysis						
< Stop	Graph	Selective Dis	splay	Actuation	Test	>	
Sensor Name	Va	alue	Unit	1	ink Up 🔺		
Battery Voltage			11.1	v			
Battery Voltage after IG Ke	≥y		11.2	V			
Actual Engine Speed			0	RPM			
Target Idle RPM			820	RPM			
Pressure Sensor(MAP) Sig	gnal Voltage		0.0	v			
Intake Manifold Pressure			100.0	hPa			
Water Temperature Voltag		5.0	v				
Water Temperature		-39.8	'C				
Simulation 🗘 😋 ୶							
V ⇒	lz ➡		лф				
Voltage Output							
	<b>]</b> .		V	7			
	S	tart					

### Data Analysis Simulation